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Investigations of ZnO thin films
grown on ¢-Al,O, by pulsed laser
deposition in N, + O, ambient
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ZnO films were deposited on c-Al,Os; using pulsed laser
deposition both with and without N, in the growth ambient.
X-ray diffraction revealed poorer crystal quality and surface
morphology for one-step growths with N, in the ambient. A
marked improvement in both the crystallographic and surface
quality was obtained through use of two-step growths em-
ploying nominally undoped ZnO buffer layers prior to growth
with N, in the ambient. All films showed majority n-type
conduction in Hall measurements. Post-annealing for 30 min-

1 Introduction Considerable effort is currently being
made to develop the stable and reproducible p-type doping
in ZnO, which is essential in order to realise bright exci-
tonic ultraviolet ZnO Light Emitting Diodes (LEDs) [1-3]
and lasers [4]. Amongst the main acceptor candidates (As
[5], P [6] and N [7]), N presents the advantages of being
better matched to the ZnO lattice plus lower toxicity than
As or P, which means that there are fewer handling prob-
lems. Hence, N was chosen for the study.

2 Experimental ZnO thin films were fabricated by
Pulsed Laser Deposition (PLD) of a sintered ZnO target in
O, ambient with a 248 nm KrF excimer laser, as described
elsewhere [8]. Growths were done on c-Al,O3 substrates
with and without the introduction of N, during growth.
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utes at 600 °C in O, systematically reduced both the carrier
concentration and the conductivity. A base room temperature
carrier concentration of ~ 10'® cm™ was linked to Al diffusing
from the substrate. 4.2 K photoluminescence spectra exhib-
ited blue bands associated with the growths having N, in the
ambient. Temperature dependent Hall measurements were
consistent with N being incorporated in the films. Processed
devices did not, however, show rectifying behaviour or elec-
troluminescence.
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Typical film thickness was between 300 and 500 nm. After
growth, the samples were subjected to 30 minute anneals at
600 °C in O, at varying pressures. Crystal structure was
studied using a Panalytical MRD-Pro X-ray Diffraction
(XRD) system. Optical properties were studied using
above bandgap, photoluminescence (PL) spectroscopy
with a 325 nm HeCd laser. Temperature dependent Hall
(T-Hall) measurements were made using In contacts in a
Van der Pauw configuration. Electrochemical Capacitance-
Voltage profiling (ECV) using a 0.1M ZnCl, electrolyte
was conducted using a commercial ACCENT profiler in
order to investigate the doping. Secondary lon Mass Spec-
troscopy (SIMS) was employed to study the depth profile
of Al in the ZnO layers. Samples with nominally diode-
like doping were processed into ring mesa LED structures,
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as described elsewhere [9], in order to check for rectifying
behaviour and/or Electroluminescence (EL).

3 Results and discussion

3.1 Structural analysis Figure 1 shows XRD 26-Q
scans for films grown with N, in the ambient both with and
without a nominally undoped ZnO buffer layer. The intro-
duction of the high quality buffer layer [10] induced
Pendellosung fringes in the 20— scan and significantly
lower Q scan linewidths. Thus XRD inferred that the use
of nominally undoped ZnO buffer layers yields lower sur-
face roughness and reduced crystallographic dispersion in
ZnO overlayers grown with N, in the ambient. 26—Q peak
position revealed no significant shift in ¢ lattice parameter
associated with growth in N, ambient.
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Figure 1 XRD 26-Q scans for the (0002) peak of nominally N
doped ZnO grown directly on a) c-Al,O3 (lower) and b) nomi-
nally undoped ZnO on c-Al,0O; (upper).

3.2 Optical characterisation 4.2 K PL spectra for
all films showed strong near band edge emission peaked at
about 3.356 eV, associated with donor bound excitons.
Figure 2 shows deep PL spectra obtained at 4.2 K for films
grown with and without N, during growth.
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Figure 2 4.2 K PL spectra for nominally undoped and nominally
N doped ZnO on c-Al,0;
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There is a difference in the band structure of the two
samples, with yellow (~2.14 eV) and blue (~2.64, ~2.83
and ~2.95 eV) bands appearing in the nominally N doped
sample, which are not present in the undoped sample. Such
a yellow band is usually associated with defects while the
blue bands appear to be linked to the introduction of N.

3.3 Electrical characterisation Room Temperature
(RT) Hall measurements show majority n-type behaviour
for all films. Annealing in O, uniformly reduces carrier
concentration (n.) and conductivity (o), as would be ex-
pected for a reduction in the n—type compensation associ-
ated with O vacancies, Zn interstitials and incorporated H
[11].

Figure 3 shows results of T-Hall measurements for a
nominally undoped ZnO film before and after O, annealing
at atmospheric pressure.
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Figure 3 T-Hall measurements of n, and mobility (n) for a
nominally undoped ZnO/c-Al,0; before and after annealing in O,.

Hall fitting (including surface effects) for the unan-
nealed sample suggests donor and acceptor concentrations
in the low 10" ¢cm™ range and quite strong space-charge
scattering in both bulk and surface regions. For the an-
nealed sample, fitting suggests donor and acceptor concen-
trations in the low 10" cm™ with reduced space-charge
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scattering. Annealing in higher O, pressures reduced the
RT n, to 3x10' em™.

Figure 4 shows T-Hall measurements for a nominally
N doped film before and after annealing in O,. Hall fitting
for the unannealed sample suggests donor and acceptor
concentrations in the low 10" cm™ range. This is more
compensation than for the nominally undoped sample (as
might be expected if N were incorporated). After annealing,
the sample exhibited stronger compensation (perhaps in-
dicative of type switching onset).
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Figure 4 T-Hall measurements of n. and p for nominally N
doped ZnO/c-Al,O; before and after annealing in O,.

3.4 ECV profiling The doping was investigated using
ECV profiling as the samples had an n-type buffer layer,
which influenced the Hall measurements. Furthermore,
Hall measurements for ZnO are often reported to be sub-
ject to persistent photoconductivity and indiscriminate type
switching effects [12]. Also, scanning capacitance micros-
copy measurements [13] suggest that the distribution of n
and p type regions at the surface, in many ZnO layers, may
be inhomogeneous and discontinuous, which can give mis-
leading Hall results.
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ECV investigations proved ambiguous, however.
Measurements for the top surface of all samples indicated
majority p-type conduction, while etch points under the
surface indicated majority n-type conduction, with a n.
which correlated with that from Hall measurements. More-
over, it was not possible to perform a complete depth pro-
file because the chemical etch rate was too low.

3.5 Compositional analysis Another potential ori-
gin of compensation in ZnO is diffusion of the shallow do-
nor, Al, from the c-Al,O; substrate into the film. SIMS in-
dicated that the Al concentration dropped with increasing
distance from the substrate to a residual level of about
~ 10" cm™ for films 400 to 500 nm thick. This n, corre-
sponds well with those of the Hall studies in films after O,
annealing. Thus the residual donor concentration could be
linked to Al in the ZnO layer.

3.6 Devices Nominally N doped layers on nominally
undoped buffers were processed into LED structures. No
rectifying behaviour or electroluminescence was observed.

4 Conclusion ZnO films were grown on c-Al,O; by
PLD both with and without N, in the ambient. A nominally
undoped ZnO buffer layer was observed to reduce the sur-
face roughness and crystallographic dispersion in the ZnO
layers deposited with N,. 4.2 K PL shows blue bands asso-
ciated with the introduction of N. Hall measurements indi-
cate dominant n-type behaviour for all samples. O, anneal-
ing reduces film ¢ and n, down to about 10'°cm™. SIMS
shows Al diffusing up from the substrate consistent with
such n.. T-Hall measurements are consistent with N incor-
poration in the ZnO layers grown in N, ambient but proc-
essed devices do not show rectifying behaviour or EL.
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